The Benefits Of FRP Fan Blades

Cooling Tower Fans

FRP Fan Blades

Why are FRP Fan Blades Better?

In the world of industrial cooling towers, great pains have been taken to make sure that efficiency is increased as much as possible. While the average person may not think about cooling towers too often, without these amalgamations of metal, plastic, and concrete, most of the industries that we have come to rely on to make the goods that we use would cease to exist. Here at Industrial Cooling Solutions, Inc., we have been in the business of constructing, maintaining, and repairing cooling towers for decades. In this time, we have seen the industry change quite a bit through the introduction of new technology, better processes, and better building materials. Of all these advancements, however, FRP composite materials have been the one thing that we feel has the greatest impact on cooling towers as a whole. In today’s post, so that all of our readers understand just how important FRP has been to this industry, we are going to go over some of the benefits that this amazing material has had on the design and function of the fan blades that are used in a large amount of towers scattered across the world. Continue reading below to learn more.

Fibre-reinforced Plastics

FRP, or fibre-reinforced plastic as it is also referred to, has been a blessing to multiple industries. Developed in the early 1900s and used mostly for military applications in the early stages, this material was quickly adapted to industrial processes that required a material that not only had a great strength to weight ratio, but one that was also resistant to many of the corrosive elements that are present in the production and transportation of chemicals and other corrosive materials. While industrial cooling towers are not exactly known for a huge presence of caustic chemicals, there is still enough of a presence to necessitate a substance that could resist these elements and continue to function in harsh conditions. The component that has benefited the most from FRP materials, without a doubt, has been the fan that is present in many of the cooling towers that are used today. Below, we have listed a few reasons that FRP fan blades have become an industry standard and why more and more cooling tower manufacturers are recommending these fan blades over their aluminum counterparts.

  • Shape: When designing a cooling tower to meet a specific industrial need, two things must be taken into account. First, the designers must make sure that enough water is pumped into the system to effectively mitigate the heat that is produced by the specific industrial process. Second, they must make sure that an appropriate amount of airflow is forced through the tower in order to make sure that the water is properly cooled along the fill material. FRP fan blades are ideal for this application because they allow designers a greater degree of control over the shape of the fan blades and mold them into the best shape possible to achieve the airflow that must be achieved. Traditional aluminum blades could only be shaped to a certain degree before the structure of the blades themselves was compromised. Additionally, metal fan blades must be attached to an axis at multiple points, greatly increasing the chances that a connector will fail or the balance of the fan will be thrown off. Because FRP fan blades are molded into a single piece, there are far fewer points on the entire fan assembly that can fail. Even better, these fan blades can be shaped to the most optimal angle possible, meaning that they are able to circulate air more efficiently than an aluminum fan blade could ever hope to accomplish.
  • Resistance to Corrosion: As we stated previously, most cooling towers are not exactly teeming with caustic chemicals, however, this does not mean that corrosive elements are not present within the system. Given enough time, water is one of the most corrosive elements in the known universe. This seemingly innocent substance has shaped the surface of our planet, digging canyons and valleys out of solid rock. While aluminum is excellent at resisting the corrosive properties of water, it is still only a metal and, as we all know, metal and water don’t exactly get along. Over time, an aluminum fan blade will always succumb to the effects of water, requiring a replacement lest the fan blade break and cause damage to the internal components of the tower. FRP fan blades, on the other hand, do not suffer from this same defect. These fan blades are highly resistant to any and all corrosive elements and are able to stand the test of time in a way that is vastly superior to any other substance used in the construction of fan blades.
  • Weight: Because cooling tower fans tend to run at thousands of RPMs, it is necessary to construct fan blades out of a material that is not only strong enough to stand up to the rotational forces that are placed on it but a material that is also light enough to place unneeded stress on the motor of the fan assembly. Before the introduction of FRP materials, aluminum was the best option for fan blade design because of its excellent strength to weight ratio. FRP fan blades, however, are even better than aluminum at providing a fan blade that is both strong and light.

At Industrial Cooling Solutions, Inc., we are dedicated to providing the best cooling tower services possible and we believe, quite strongly, the FRP fan blades are the best option for nearly every application that our customers may have.

Contact us to learn more about the types of FRP fan blades that we offer.

    Read more

    Written by:

    Comments (0) October 23, 2017 /

    A Look At Cooling Tower Fan Efficiency Pt. 3

    Cooling Tower Fans

    Efficiency Factors to Consider in Cooling Tower Fan System Design

    Hello, constant reader, and welcome to part three of our multi-part blog series on the factors that inhibit the efficiency of cooling tower fan systems. As this is part three of our series, we encourage you to read our previous two posts, part 1 & part 2. Each post builds upon the last and, as a result, you may find yourself quite lost if you are not familiar with the context of this series. In today’s post, we are going to pick up where we left off last time and delve deeper into the second main factor that can affect the efficiency of a fan system: The fan housing. Like most components in a large machine assembly, the fan housing plays a role that, if not properly optimized, can have a larger negative impact on the overall efficiency of the system than one would first suspect. Even a small decrease in efficiency can be enough to throw off an entire cooling tower system, which is why it is so important for engineers to make sure that their initial system is as optimal as possible before construction.

    Don’t Take Your Fan Housing For Granted

    In our previous post, we discussed the impact that system design can have on the overall efficiency of a cooling tower fan system. If inefficiencies are built into the system from the start, such as insufficient blade design and positioning, the system is never going to be able to perform at its peak. While these two factors account for a lot of the inefficiency found in fan systems, the housing of the fan assembly can also cause issues with overall efficiency. In the world of industrial cooling towers, one of the most important factors of system loss revolves around the air leakage around the tips of the fan blades. This loss is directly influenced by the tip clearance of the fan blades and the velocity pressure at the operating point and is caused by the tendency of high-pressure exit air to circulate around the fan blade tips into the low-pressure air in the inlet of the tower. For this reason, it is important to make sure that the inlet conditions of a cooling tower are as optimal as possible.

    Pay Attention to the Inlet Conditions

    In relation to wet cooling towers, a velocity recovery stack is a common means by which engineers can improve inlet conditions and conserve horsepower. To perform this function, velocity recovery stacks most often incorporate a slightly tapered exit cone in conjunction with a well-rounded inlet bell. This results in a significantly reduced velocity pressure at the exit of the inlet compared to the plane of the fan. Because the quantity of air on both planes is the same, however, the recovery of velocity pressure is converted into static regain, lowering the total pressure requirements of the fan. This results in less horsepower being needed to produce the required rotational velocity of the fan. Additionally, the entrance into the velocity recovery stack through the fan deck should not be neglected because, often, this entrance can create turbulence and losses in the fan system. Although most stack designs tend to incorporate a large inlet radius, heavy structural members beneath the stack or a sharp corner through the fan deck ca negate the smooth air flow condition in the stack itself. It is important to note that these issues are not under the control of the end user, meaning that the design of the cooling tower itself should try to limit these negative variables.

    Thank you for taking the time to read our third entry into our blog series on cooling tower fan efficiency. Join us again next time as we conclude our series by discussing the recirculation of hot air how this factor can contribute to decreased efficiency in a cooling tower fan system. As always, if you would like to learn more about the cooling tower fan options that we offer here at Industrial Cooling Solutions, Inc., please contact us today.

    Read more

    Written by:

    Comments (0) October 11, 2017 /

    A Look At Cooling Tower Fan Efficiency Pt. 2

    Cooling Tower Fans

    Cooling Tower Fan Efficiency Requires Careful Analysis

    Hello, and welcome back to the Industrial Cooling Solutions, Inc. blog! If you are just now joining us, we are in the middle of a multi-part blog series that is dedicated to detailing the factors that influence the efficiency levels of industrial cooling tower fans. If you have not read our previous post, we highly suggest that you go do so now. While you may find the information in this second post useful, it is build upon important ideas that are presented in the first post and, as such, will make more sense if you read the posts in sequential order. Now that we have that small disclaimer out of the way, we are going to use today’s post to continue where we left off last time and discuss some of the factors that influence the overall efficiency of a cooling tower fan system. While each factor may seem small when isolated, together they can greatly decrease the efficiency of a cooling tower, effectively rendering the tower useless for its intended application. Keep reading below to learn more.

    Potential Losses in System Efficiency Can Occur in Several Separate Areas

    When it comes to overall system efficiency in cooling tower fan assemblies, there are three main areas that need to be considered by researchers and engineers alike.

    1. Losses caused by the system design of the fan rather than by variable physical properties.
    2. Losses caused by variable environmental properties.
    3. Performance losses caused by the recirculation of hot air.

    Of these three main areas of potential loss, only the second category is easily fixable. Below, we have listed out the details surrounding the first category that affects the efficiency of a cooling tower fan system.

    Losses Caused by System Designs

    While the variables that might potentially decrease the efficiency of a cooling tower fan system are sometimes easy to identify, most of the time they are not. One factor that can greatly affect the overall efficiency of the system is the design of the fan blade. For the most part, modern axial fans found in industrial cooling towers are made from either FRP materials or aluminum. Aluminum fan blades, by their very nature, are always of a uniform design, whereas FRP fan blades can be molded into pretty much any shape that an engineer may want. No matter which type of fan blade material is used, the main purpose of the fan assembly is to produce uniform airflow over the entire plane of the fan. Uniform airflow ensures that the optimal amount of force is produced to adequately dissipate the heat that is introduced into the cooling tower. To determine that a fan blade design is able to produce the amount of airflow that is needed, the work done at any radius along the fan blade is a function of blade width (angle of attack and tangential velocity squared).

    The Shape of Fan Blades Plays an Important Role in Efficiency

    With the above information in mind, it can be concluded that as a point on the fan blade decreases from the tip toward the hub of the fan assembly, the tangential velocity decreases sharply. To compensate for this and produce uniform airflow, the twist of the blade along with its width must also increase. This becomes an issue when dealing with aluminum fan blades because if the blade width cannot be increased, the twist of the blade must be increased to compensate. Due to the elasticity limits of aluminum, this twist can only be taken to a certain level before the fan blades break. Luckily, FRP fan blades have no such limitation because they are molded into a single piece, allowing the most ideal shape to be more closely achieved.
    Another factor that is affected by the design, shape, and twist of the fan blade is the fan operating point, or the point where the system resistance line meets the fan performance line. In laymen’s terms. The operating point is the blade pitch angle that produces the necessary air flow against the required system resistance of the cooling tower. Depending upon the fan speed, only a single pitch angle will be able to satisfy the system design operating condition. To put all of this together, within certain limits, the speed of a cooling tower fan can be adjusted so that the most optimal pitch angle can be selected that will satisfy the required system resistance.

    Faulty Design Leads to Faulty Performance

    When considering the above two points, it is easy to see how poor fan blade design, as well as a poor selection in the operating point of the fan system, can contribute to a loss in efficiency of a particular cooling tower fan system. Once in place, these two factors are not always the easiest things to fix, meaning that it is always in the best interest of the engineer and designer to make sure that their initial system design is as efficient as possible. If these considerations are not taken into account, valuable time, energy, and money will have to be spent rectifying the issue.

    Thank you for reading part two of our blog series on the factors that should be taken into consideration in relation to cooling tower fan efficiency. If you would like to learn more about our selection of FRP fan blade designs and the applications in which they can be used, please contact us today at Industrial Cooling Solutions, Inc. We have completed dozens of cooling tower projects around the world and we are certain that we can handle any and all needs you may have when it comes to optimizing your fan system.

    Read more

    Written by:

    Comments (0) October 4, 2017 /

    The Importance Of A Stable Fan

    Cooling Tower Fans

    A Wobbly Fan is Bad for Business

     
    Here at Industrial Cooling Solutions Inc., we have a lot of experience when it comes to cooling tower fans. For the vast majority of industrial cooling towers, fans are used as a way to ensure that as much heat as possible is mitigated while also helping to reduce the rate of evaporation present within the tower itself. Unfortunately, because these fans are in a near constant state of rotation, issues can pop up. Although the average person doesn’t put too much thought into it, circular rotation is not as easy to accomplish as one might think. Centrifugal force can place a large amount of stress on these fan assemblies and, if left to their own devices, these fans can and will spin themselves into oblivion. In today’s post, we are going to go over some of the ways that you can make sure that your cooling towers fan is set up for success and ways you can reduce the amount of wobble present in your fan assembly. Continue reading below to learn more.
     

    Why Does the Wobble Matter?

     
    First things first, we think it is important to explain exactly what we mean when we use the term “wobble.” If you have every had an unbalanced ceiling fan, you probably already realize how bad a fan can start to wobble when it is not setup correctly or it is damaged. This same idea can be applied to fans in industrial cooling towers, however, with these particular types of fans, we aren’t so much worried about the wobbling so much as we are worried about the vibrations that cause the fan to wobble. Vibrations, even small ones, can cause fans in industrial cooling towers to perform poorly and, in some extreme cases, they can even cause damage to additional components within the tower. So, what should you do to help mitigate vibrations and ensure that your fan is working as well as possible? Read below to find out.
     

    • Balance: Like The Force, fans in industrial cooling towers are all about balance. These fans rotate at such high speeds that even a slight variation in the balancing of the fan blades can have tremendous effects on the fan assembly as a whole. If one fan blade is unbalanced, it will place stress on the other fan blades through vibrational forces which, over time, can compromise the entire system including the motor that drives the fan and the drive shaft that transforms mechanical energy into rotational force. If you’ve noticed that a fan in one of your cooling towers is underperforming, take the time to make sure that the blades are balanced. A small adjustment now could save a lot of time and energy in the future.  
    • Damage: In industrial cooling tower applications, fans are used to push large quantities of air through the top of the tower or, in some cases, are used to pull large amounts of air into the tower. If a fan blade becomes damaged, it can affect the way that the air flows over the entire fan assembly and, if not caught quickly, can lead to quite a bit of damage. Even a small knick in a single fan blade can be enough to disrupt the airflow to the point that it starts to cause vibrations to occur. As we stated earlier, vibrations are never a good thing when it comes to fan assemblies. To help reduce the chances that this will happen, we suggest that you inspect the blades of your cooling towers fans on a regular basis to ensure that they have not become damaged in some way.

     
    We hope that this blog has been informative and that you have gained a little more knowledge about the importance of a stable fan in your industrial cooling tower. If one of your fans has become damaged beyond repair or you would simply like the advice of some experts, contact us at Industrial Cooling Solutions Inc. today. We have years of experience dealing with cooling tower fans and we feel that our past projects give us the knowledge, tools, and experience needed to handle any issues that you may have in relation to your tower.

    Read more

    Written by:

    Comments (0) July 6, 2017 /

    The Importance Of Fan Blade Maintenance

    Cooling Tower Fans

    Fan Blades are Essential in Industrial Cooling Towers

     
    Hello, and welcome back to the Industrial Cooling Solutions blog. With summer in full swing, cooling towers across the world are working overtime to ensure that they are doing their job properly. As we all know, heat has an effect on the evaporation rates of water and, unfortunately, this simple fact holds true for the efficiency of cooling towers. The sole purpose of a cooling tower is to make sure that industries, factories, and large buildings are able to properly mitigate the heat that they produce on a daily basis and, in some cases, making sure that harmful pollutants do not enter the atmosphere. While there are many components to an industrial cooling tower, few are as important, and finicky, as the fan blade. Traditionally, fan blades in cooling towers have been one of the components that needs the most attention. Rotating thousands of time per minute, these fan blades put up with a lot of stress, meaning that they were much more prone to breaking than other components of the tower. While recent advancements in fan blade construction have made them more durable and better able to withstand the rigors of daily use, they are still a mechanical component. In today’s post, we are going to go over some of the reasons that it is important to make sure that your cooling tower fan blade is in good, working condition. Continue reading below to learn more.
     

    It’s All About Efficiency

     
    For the most part, industries want to be as efficient as possible. Efficiency cuts down on the amount of time and money that industries must spend in order to properly function and is one of the key components to turning a profit. Below, we have listed a few ways that making sure your cooling tower fan blade is as healthy as possible can increase efficiency.
     

    • Energy: While the average person may feel that their home’s electricity bill can get pretty high during the summer months, it is nothing compared to the amount of energy that it takes to run a factory or assembly plant. These plants can go through tens of thousands of dollars worth of electricity each month just to function. Because of this, these industries are always looking for ways to cut down on their energy consumption and decrease the amount of money that they are paying out each month. If a cooling tower fan has become compromised, that cooling tower is going to require more energy to function. Over time, this increase in energy consumption, however small, can have a drastic effect on the amount of power consumed on a monthly basis. Making sure that the fan assembly and blade are in good condition helps to ensure that the tower is running as efficiently as possible and is using as little energy as possible.
    • Cost: So far, humans have yet to create a machine that doesn’t need maintenance. Mechanical processes often require many moving parts working in conjunction with each other and, if one component of the machine fails, the entire system could cease to work or become damaged. Fan blades in cooling towers present a unique danger because they rotate at such a high speed on a constant basis, meaning that if a blade becomes compromised, it could cause some serious damage to the rest of the tower. While maintenance costs are never fun, most industries have realized that spending a little money on preventative maintenance is much more desirable than having to replace thousands of dollars of fill material that was ripped to shreds by a rogue fan blade.

     
    We hope that this blog has helped to shed some light on why it is so important for industries to make sure that the fan blades in their cooling towers are well maintained. If you’ve noticed that the fan on your cooling tower could need a little help, contact us today at Industrial Cooling Solutions Inc. We have thousands of hours of cooling tower maintenance under our belts and we are certain that our knowledgeable staff can help you with any needs that you may have. Additionally, if you need to purchase new fan blades for your cooling tower, we offer FRP fan blades that have been proven to work better than their traditional aluminum blade brethren.

    Read more

    Written by:

    Comments (0) June 27, 2017 /

    How To Reduce Cooling Tower Fan Vibration

    Cooling Tower Parts

    The Less Vibration the Better

    Hello, and welcome back to our blog. Here at Industrial Cooling Solutions Inc., we specialize in the construction and upkeep of industrial cooling towers and, as a result, we come across a lot of issues that crop up in the cooling tower industry. One of the most common issues that we run into has to deal with vibration. Anyone who deals with industrial machinery knows that vibration, unless it is specifically asked for, is hardly ever a good thing for machines to experience and can cause a lot of issues if not properly addressed. In relation to industrial cooling towers, vibration issues most commonly occur within the tower’s fan system. In today’s post, we are going to go over a few ways that you can make sure your fan system experiences as little vibration as possible. Continue reading below to learn more.

    Contact us today and let us help you make sure that your cooling tower is running as efficiently as possible.

      Is Your Cooling Tower Fan Running Properly?

      Traditionally, rotating equipment is mounted at grade and uses the mass of a foundation and grout to reduce vibration and provide both support and stiffness to the rotation apparatus. Unfortunately, cooling tower fans are elevated several feet above a basin a basin of water and are most commonly held in place with support beams made of wood or fiberglass. This means that cooling tower fans do not get the benefit of a solid base to help reduce vibrations and must instead be tightly calibrated to reduce vibrations as much as possible. Below, we have listed a few steps that can be taken to help make sure that a cooling tower fan vibrates as little as possible.

      • Tighten Everything: When it comes to the structures responsible for holding a cooling tower fan in place, it is important to make sure that everything is held together as tightly as possible. Making sure the structure is as stable as possible be reduces the amount of movement that the fan can experience. Before beginning any other type of calibration work, make sure that the bolts holding the fan are as tight as possible as well as the bolts that hold the mounting structure to the tower. Additionally, it is important to check the bolts that hold the fan to the rotator. If these bolts have become compromised, the fan is more likely to become damaged.
      • Inspect the Fan: Once you have made sure that the structure holding the fan is as secure as possible, take a moment to assess the fan. Each blade of the fan should be securely fastened and angled in the same way. If you notice that any of the blades have become damaged, assess the situation to determine whether the blade can be repaired or if it is time to replace the blade altogether. If a single blade on the fan is warped or damaged, it can cause the entire fan to wobble as it rotates. While these wobbles might be tiny in the scheme of things, over time they can cause serious damage to the machinery designed to rotate the fan.
      • Inspect Gearbox and Driveshaft: While inspecting the fan blades is an important part of ensuring that the cooling tower fan experiences as few vibrations as possible, neglecting to check the mechanisms that actually rotate the fan can lead to issues as well. Without a properly functioning gearbox, the fan inside of a cooling tower will not properly rotate, causing myriad issues in terms of functionality and efficiency. When inspecting the gearbox and driveshaft, make sure to note any signs of wear that may have cropped up since the last inspection. While these components are designed to operate under heavy use for long periods of time, they are still machines and will become compromised if they are not properly taken care of.

      If after performing a maintenance check on your cooling tower fan system you find that there are some issues that need to be addressed, contact the experts at Industrial Cooling Solutions Inc. today. We offer a wide range of cooling tower maintenance services and we also provide a variety of cooling tower replacement parts. With years of experience in the cooling tower industry, we are more than qualified to assist in the replacement of key components in cooling towers and we are certain that we can handle any issue that you may be experiencing.

      Read more

      Written by:

      Comments (0) May 22, 2017 /

      Translate »
      error: Content is protected.